
CaYPT Problem H. Magnetic Assist
(Dated: April 7, 2025)

By attaching a magnet to a string, and allowing it to move over magnets on a base, interesting
motion patterns emerge. In this report, we first model the magnetics and mechanics in the system,
before investigating motion in both single and double magnet cases.

INTRODUCTION

The problem statement for Magnetic Assist reads:

“Attach one or two magnets to a non-magnetic and
non-conductive base such that they attract a magnet

suspended from a string. Investigate how the motion of
the moving magnet depends on relevant parameters.”

As you might expect, when you attach magnets in such
an orientation, the equilibrium point of the pendulum
shifts—thus the name Magnetic Assist.

If we’re too look at the system from a forces perspec-
tive, the reason for this becomes more obvious.

Now, the interesting and unexpected parts of this sys-
tem emerge in motion, not in the bland qualitative, so
we will move on to modelling the system.

MAGNET INTERACTION

A magnet’s properties come from the co-alignment of
many magnetic dipoles produced by electrons orbiting
the nucleus. To be able to model this without solving for
each atom, we use a current cylinder model.

FIG. 1. Illustration of the current cylinder model.

The current cylinder model states magnetic dipoles
within the object cancel each the neighboring ones out,
save for the dipoles at the boundary of the material,
which have no neighbors in the radial direction. Given
this, we can state that the bound current density is equal
to Eq. 1 [1, p.277].

JB =
m⃗

πr2
· ẑ (1)

Where m⃗ is the overall magnetic moment.
Once we’ve greatly simplified our system using the

bound current approximation, we can discretize it first
into rings, then segments—thus the two integrals.

FIG. 2. Visualization of Biot-Savart integration.

r⃗′ =

cos θ · rsin θ · r
h

 (2)

[B⃗](r⃗) =
IBµ0

4π

∫∫
d⃗l × (r⃗′ − r⃗)

||r⃗′ − r⃗||3
(3)

Derived from the Biot-Savart equation, Eq. 3 solves for
the B-field at any point in Cartesian space. This can be
extended to multiple magnets through the superposition
principle.
We solve numerically using NumPy and Numba to

achieve near compiled performance. My code is open-
sourced[2].



2

FIG. 3. B-Field Vector Plot.

As we now know the magnetic field, we can solve for
the magnet attraction caused by the Lorentz force.

FIG. 4. Visualization of Lorentz integration.

[F⃗B ](r⃗) = I

∫∫
B⃗ × d⃗l (4)

By integrating the Lorentz force across the discretized
pendulum magnet, we can find the net magnetic force
acting on the pendulum. However, an issue arises in that
the pendulum magnet’s orientation is not defined.

Due to the magnetic relatively strong dipole moment
compared to inertia, we can assume the pendulum mag-
net is aligned with the external magnetic field when it

FIG. 5. Force vector plot. Represents the force vector acting
on a cylindrical magnet at every position.

is interacting (something qualitatively observed). Given
this, we apply a Rodriguez vector transformation to align
it.

r⃗′ = r⃗B̂z + (k̂ × r⃗)

√
1− B̂z + k̂(k̂ · r⃗)(1− B̂z) (5)

Once we’ve defined our orientation using Eq. 5, we
can solve for the magnetic force acting on the pendulum
given any Cartesian position. A plot of this can be seen
in Fig. 5.

MECHANICS

Having now solved for the magnetic interaction, we can
proceed to analyze the mechanics of the pendulum. To
do this, we first solve for the Euler-Lagrange equations
of motion for the pendulum.

d

dt

(
∂L

∂θ̇

)
=

∂L

∂θ

d

dt

(
∂L

∂ϕ̇

)
=

∂L

∂ϕ

(6)

θ̈ = sin(θ)cos(θ)ϕ̇2 − g

l
sin(θ)

ϕ̈ =
−2θ̇ϕ̇cos(θ)

sin(θ)

(7)
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Next, we project the cartesian magnetic force onto the
tangent plane of the pendulum’s spherical projection:

Fθ = Fx cos θ cosϕ+ Fy cos θ sinϕ+ Fz sin θ

Fϕ = −Fx sinϕ+ Fy cosϕ
(8)

Lastly, we define relevant damping terms in the system,
including Coulomb friction, air resistance, viscous damp-
ing, and electromagnetic damping (eddy current damp-
ing).

θ̈d = µcsgn(θ̇) + µaθ̇ + µv θ̇
2 + µe

˙⃗
B2

ϕ̈d = µcsgn(ϕ̇) + µaϕ̇+ µvϕ̇
2 + µe

˙⃗
B2

(9)

Given this complete equation of motion, we can solve
the ordinary differential equations numerically using the
Runge-Kutta-Fehlberg adaptive method.

We implement our code in Python, but compile it using
Numba similarly to the field and Lorentz integrations.
Compiled performance integrates a 8 second simulation
in typically under a second timescale.

EXPERIMENT

Our experimental setup consists of a camera mounted
on a tripod over which the pendulum is suspended using
high-tension wires. A picture can be seen in Figure 6.

FIG. 6. Picture of experimental setup.

We use OpenCV to apply a computer vision algorithm
to the video feed to obtain the pendulum’s position in
real-time.

Since we’ve removed shadows using our observer light-
source, as well as increased contrast through the paper
plane on top of the base magnets, the edge detection
algorithm works very well. While we found challenges
removing the suspension wire in the captured video, we
were able to use a high aperture lens (35mm/1.4) to ef-
fectively pull it out of focus.

Having found the position on the projected image, we
can use the pixel coordinates to calculate the pendulum’s
position in the real world.

FIG. 7. L: Frame of camera capture and found position R:
image of edge-detection frame.

FIG. 8. Geometry of setup.

ϕ = tan−1

(
px
py

)
(10)

∠lp = tan−1

(
sh∥p∥
fpw

)
(11)

θ = ∠lp + arcsin

(
lc
lp

sin∠lp

)
(12)

To verify this, we manually measure angles and compare
to the calculated values. Results can be seen in Fig. 9.

FIG. 9. Verification of calculated angles.
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Characterization

We characterize the relevant constants in the system.
Firstly, damping constants were fit obtaining damping

curves experimentally across multiple trials and fitting
relevant constants.

FIG. 10. Multiple damping characterization trials using min-
imized constants. RMSE 0.03. Eddy damping is also fit.

Next, we fit the magnetic dipole moment, m⃗, to our
magnets. We do this by using a 3-axis teslameter (µT
accuracy) with baseline measurement. We find m =
0.0987Am2, or alternatively M = 1.22× 106A/m.

FIG. 11. Fit of magnetic dipole moment. N=3 in experiment.

ANALYSIS

As per the problem statement, we will be analyzing
the pendulum’s motion in both the single and double
attracting magnet configuration. Analysis of the single-
magnet regime is largely in the frequency domain, while
analysis of the double-magnet regime is focused on chaos.

Single Magnet Regime

The single magnet regime can be roughly described
to be composed of 3 phases: a simple-pendulum phase,
a inter-phase where the frequency of oscillation rises,

FIG. 12. Theory vs. experimental for a single-magnet case.
Oscillations in experimental are due to off-angle camera.

and a trembling phase where the frequency of oscillation
plateaus.
This can be best visualized by plotting to peak of a

fourier transform across time bins.
In Fig. 13, we’ve labeled each phase. These changes

can be explained by changes in the amplitude of magnetic
force as θ decreases, affecting the centripetal force acting
on the pendulum. Eventually this force asymptotes due
to the diminishing change θ has on the distance between
the magnets, causing the trembling.

FIG. 13. Visualization of the different phases in the pendulum
motion.

We can see that our simulation can successfully pre-
dicts the frequency characteristics of the system in Fig.
14. Unfortunately, we only have one experimental data-
point for magnet strength due to being unable to elim-
inate compounding factors such as mass and geometry
when changing the magnet strength.

FIG. 14. L: Frequency over time. R: Tremble frequency with
magnetic strength.



5

It should be noted that in this single magnet analy-
sis we only investigated the least eccentric mode, as it
is the most revealing. Our simulation does however ac-
curately model the pendulum in situations of increased
eccentricity as seen in Fig. 15.

FIG. 15. Visualization of the different phases in the pendulum
motion.

Double Magnet Regime

The double magnet regime of this system is more in-
teresting. Due to the prevalence of transient chaos, com-
paring simulation transients with experimental transients
not meaningful (they always diverge in chaotic regions).

To analyze this, we use Fractal basins. In a fractal
basin, each pixel represents a separate simulation where
the initial conditions coincide with the pixel’s X and Y
coordinate. The color of that pixel represents the final
osition of the pendulum along the x-axis.

FIG. 16. Visualization of end states based on initial position.

In Fig. 16 you see a fractal basin formed by a set of
conditions in the double-magnet regime.

Basin Zones

One of the interesting implications is that the path
the pendulum takes stays consistent within basin zones.
For instance, as seen in Fig. 17, the pendulum loops
around the right magnet before settling on the left (thus
the green patch).

FIG. 17. An example of a basin zone.

Key Parameter Interactions

First, we vary the length of the pendulum string. As
the string length increases, the basin zone increases (as
the initial potential energy decreases). The result can be
seen in Fig. 18.

→

FIG. 18. Change in basin as length is increased.

Next, varying the strength of our magnet, we see that
the basin zone grows in Fig. 19.

→

FIG. 19. Change in basin as magnet strength is increased.
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Gravity as a Third Attractor

Another interesting phenomenon occurs when you
move the magnets apart from each other. As is visi-
ble in the basin shown in Fig. 20, a third color emerges,
turqoise, symbolizing an end state between the two mag-
nets.

FIG. 20. Fractal basin where a third attractor has emerged.
Patterns at edges are due to lack of integration time.

This can be explained through potential hills.
We can use the magnetic dipole energy equation (as

this is purely a qualitative investigation) and gravita-
tional potential equation (Eq. 13-14).

UB = B⃗ · m⃗ (13)

Ug = −mg
√

l2 − x2 − y2 (14)

Through this, we can solve for the potential energy as
a function of the pendulum’s position. A 3D plot of this
can be seen in Fig. 21.

FIG. 21. A 3D plot of the calculated potential hills of a
double-magnet system.

In Fig. 22, we observe that as we move the magnets
away from each other, a third dip in the energy forms,
creating a stable equillibrium position.

FIG. 22. A cross section of the potential hill where a third
attractor is visible.

CONCLUSION

In this report, we investigated the motion of a sus-
pended magnet under the influence of attractive magnets
placed on a base.

We first developed a comprehensive model for mag-
netic interactions using a current cylinder model. For
the mechanics, we derived the equations of motion us-
ing Euler-Lagrange formalism and incorporated various
damping effects. For the experimental setup, we designed
a novel single-camera computer vision approach, with
which we collected relevant data.

After which we analyzed both the single and double
magnet regimes in relation to numerous parameters.

If I were to be selected, future work during IYPT
preparation would largely include collecting more exper-
imental data.

Lastly, thank you to the people I received feedback
for regarding this project, and the COC for organizing
CaYPT.
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